
Multi-thread & Multi-process
- Problems and Solutions

Håkan Sundell , Ph.D.

(C) 2008 www.pss-ab.com 2

Outline

• Problems in program development

– Description of core issues

– Traditional solutions

• Our solutions

– Technology

– What we offer

(C) 2008 www.pss-ab.com 3

Multi-thread and Multi-process

• Programs consist of many tasks

• That execute on one or more processors

(C) 2008 www.pss-ab.com 4

Communication

• Threads/Processes need to communicate and

work with shared resources.

– Alternative 1: Message Passing

• High overhead and Abstract system design.

– Alternative 2: Shared Memory

• Fast and Intuitive

counter

…

counter=counter+1;

…

…

counter=counter+1;

…

Task 1 Task 2

Memory

(C) 2008 www.pss-ab.com 5

Critical Sections

• Problem: operations on shared variables in
programming languages are not atomic.

• Straightforward solution: Apply mutual exclusion

counter=counter+1; Read + Write=

Read 1 +

+ Write 2

Write 2Task 1:

Task 2: Read 1

counter=2,

but should be 3!

Read 1 +

+ Write 3

Write 2Task 1:

Task 2: Read 2

LOCK

LOCK

!

+ +

(C) 2008 www.pss-ab.com 6

Scheduling

• Problem: We have many threads and few
processors.
– Each thread might have different importance (priorities)

• Solution: Threads must be scheduled to
alternately use the processors.
– Scheduling algorithm (Operating System)

– Pre-emption of running threads, so that all threads will
have the chance to run, a little bit at a time.

• Pre-emption can not be done too often as the task of changing
the running thread is very costly.

(C) 2008 www.pss-ab.com 7

Multiprocessors

• Needs for performance are increasing

– Single processor speed has reached its limit

(due to power/heat)

• We need multiple processors to increase

performance!

– Multiprocessor systems.

– Hyper-threading and/or multi-core technology.

(C) 2008 www.pss-ab.com 8

Solutions are not

compositional!

• Critical Sections + Scheduling:

– Blocking. Threads must wait and get

delayed. Significant overhead costs (waiting,

pre-emption), i.e. reduced performance.

– Deadlocks. Reduced fault-tolerance, if one

thread fails, all other might also fail.

– Unpredictable Real-time Behavior. Threads

might not really execute with the set priority.

(C) 2008 www.pss-ab.com 9

Critical Sections +

Multiprocessors:

• Reduced Parallelism. Several threads with

overlapping critical sections (in red) will cause

waiting processors to go idle (indicated with).

Task 1:

Task 2:

Task 3:

Task 4:

(C) 2008 www.pss-ab.com 10

Communication+Scheduling+Uni/Multiprocessors:

New Solution

• Avoid Critical Sections!

– Avoid Blocking. Increased performance, better

utilization, i.e. less hardware needed ($).

– Avoid Deadlocks. Increased fault-tolerance as failed

tasks can not affect others to fail.

– Reliable Real-time Behavior. Access to shared

resources will not affect priorities of threads.

– Increased Parallelism. Increased overall performance,

better utilization, i.e. less hardware needed ($).

(C) 2008 www.pss-ab.com 11

Non-Blocking

Synchronization

• Avoiding critical sections: Can it be done?

• Yes, the key lies in how mutual exclusion (i.e.
mutex, semaphore) is implemented in actual
hardware (i.e. processors).
– Atomic primitives in hardware can atomically update

one memory word.

• Sophisticated solutions can exploit the same
atomic primitives to support access to shared
resources without locks, i.e. non-blocking.

(C) 2008 www.pss-ab.com 12

Non-Blocking Algorithms

• Lock-Free. Guarantees that always one
operation is making progress.
– Based on the assumption of a low-conflict scenario,

and retries until success.

– Low overhead, high performance and high scalability.

• Wait-Free. Guarantees that any operation will
finish in a finite time.
– Complex solutions that handles high-conflict

scenarios with a strict ”ticket” order.

– High overhead, medium performance and medium
scalability.

(C) 2008 www.pss-ab.com 13

Other Believers

• Researchers. Since over 30 years ago, leading
researchers have addressed the problems with critical
sections and parellelism and sought for practical non-
blocking solutions.

• Real applications. Since several years, non-blocking
technology are used in a wide range of applications.
– Applications span from business and trade applications, music

and synthesizer applications to even operating system kernels.

– The Java programming language now contains basic non-
blocking constructions.

(C) 2008 www.pss-ab.com 14

Real Applications:

Example

• Splash-2
– A benchmark suite of several applications for

Scientific Computing for multiprocessors.

– In 2002, researchers performed experiments with
replacing simple lock-based constructions with
corresponding non-blocking alternatives.

– Highly considerable increase in scalability for the
communication-intensive applications!

• No increase in applications with very little communication (as
it is there that non-blocking synchronization can improve).

(C) 2008 www.pss-ab.com 15

Splash-2

Benchmark Suite

58P

58P

58P

58P

32P
24P24P

(C) 2008 www.pss-ab.com 16

What we offer

• Custom-designed components.

– Wait-free/lock-free solutions for specific purposes.

• Software library (NOBLE).

– State-of-the-art implementations of the very latest

wait-free/lock-free versions of common program

components.

• e.g. stack, queue, deque, priority queue,

dictionary, list, snapshot, transactions etc.

Hardware

Application

NOBLE

(C) 2008 www.pss-ab.com 17

NOBLE Professional Edition:

Contents

• Memory Management
– Memory allocation

– Memory reclamation (garbage collection)

• Atomic primitives
– Single-word and Multi-word transactions.

• Common shared data structures
– Stack

– Queue

– Deque

– Priority Queue

– Dictionary

– Linked Lists

– Snapshots

(C) 2008 www.pss-ab.com 18

NOBLE Professional Edition:

Design

• Easy to use. Hides the underlying complexity and
shows a common and simple interface.

• Versatile. Contains lock-based as well as lock-free/wait-
free implementations of each component.

• Efficient. Designed for best possible performance.

• Object-oriented. Designed in C, and also provided with
a generic interface in C++.

• Configurable. A lot of optional parameters and
functionalities that can be set/tuned to meet specific
needs.

(C) 2008 www.pss-ab.com 19

NOBLE Professional Edition:

Example (C)

Thread 2

Globals

Thread 1

Main

Thread

1
Queue

Thread

2

(C) 2008 www.pss-ab.com 20

NOBLE Professional Edition:

Example (C++)

Thread 2

Globals

Thread 1

Main

Thread

1
Queue

Thread

2

(C) 2008 www.pss-ab.com 21

How we work

• Practical

• Efficient

Algorithmic

Design
Correctness

Implementation

(C) 2008 www.pss-ab.com 22

How we work

• Algorithm design
– We are experts in designing efficient non-blocking algorithms

suited for practice.

• Correctness
– We create proofs of relevant correctness criteria using analytical

and mathematical-style readable text, that cover all possible
cases of concurrency and interleavings of program statements.

• Implementation
– Implementation of algorithms in real program code involves

many details that need deep understanding of the corresponding
algorithm in order to properly inherit the correctness and
performance from it.

(C) 2008 www.pss-ab.com 23

Areas of possible non-

blocking applications

• Embedded systems
– Enhanced predictability and simpler development.

• Scientific computing
– Increased scalability gives results faster.

• Business and support systems
– Handle more transactions per time unit.

• IT and telecommunication
– Make more with same hardware.

• Games and entertainment
– Better performance with same (the users) hardware.

(C) 2008 www.pss-ab.com 24

Questions?

Please feel free to contact

us for more information!

