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Multi-thread and Multi-process

• Programs consist of many tasks

• That execute on one or more processors



(C) 2008 www.pss-ab.com 4

Communication

• Threads/Processes need to communicate and 

work with shared resources.

– Alternative 1: Message Passing

• High overhead and Abstract system design.

– Alternative 2: Shared Memory

• Fast and Intuitive

counter
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…
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Critical Sections

• Problem: operations on shared variables in 
programming languages are not atomic.

• Straightforward solution: Apply mutual exclusion

counter=counter+1; Read + Write=
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+ Write 2
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Scheduling

• Problem: We have many threads and few 
processors.
– Each thread might have different importance (priorities)

• Solution: Threads must be scheduled to 
alternately use the processors.
– Scheduling algorithm (Operating System)

– Pre-emption of running threads, so that all threads will 
have the chance to run, a little bit at a time.

• Pre-emption can not be done too often as the task of changing 
the running thread is very costly. 
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Multiprocessors

• Needs for performance are increasing

– Single processor speed has reached its limit 

(due to power/heat)

• We need multiple processors to increase 

performance!

– Multiprocessor systems.

– Hyper-threading and/or multi-core technology.



(C) 2008 www.pss-ab.com 8

Solutions are not 

compositional!

• Critical Sections + Scheduling:

– Blocking. Threads must wait and get 

delayed. Significant overhead costs (waiting, 

pre-emption), i.e. reduced performance.

– Deadlocks. Reduced fault-tolerance, if one 

thread fails, all other might also fail.

– Unpredictable Real-time Behavior. Threads 

might not really execute with the set priority.
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Critical Sections + 

Multiprocessors:

• Reduced Parallelism. Several threads with 

overlapping critical sections (in red) will cause 

waiting processors to go idle (indicated with      ). 

Task 1:

Task 2:

Task 3:

Task 4:
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Communication+Scheduling+Uni/Multiprocessors:

New Solution

• Avoid Critical Sections!

– Avoid Blocking. Increased performance, better 

utilization, i.e. less hardware needed ($).

– Avoid Deadlocks. Increased fault-tolerance as failed 

tasks can not affect others to fail.

– Reliable Real-time Behavior. Access to shared 

resources will not affect priorities of threads.

– Increased Parallelism. Increased overall performance, 

better utilization, i.e. less hardware needed ($).
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Non-Blocking 

Synchronization

• Avoiding critical sections: Can it be done?

• Yes, the key lies in how mutual exclusion (i.e. 
mutex, semaphore) is implemented in actual 
hardware (i.e. processors).
– Atomic primitives in hardware can atomically update 

one memory word.

• Sophisticated solutions can exploit the same 
atomic primitives to support access to shared 
resources without locks, i.e. non-blocking.
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Non-Blocking Algorithms

• Lock-Free. Guarantees that always one 
operation is making progress. 
– Based on the assumption of a low-conflict scenario, 

and retries until success. 

– Low overhead, high performance and high scalability. 

• Wait-Free. Guarantees that any operation will 
finish in a finite time.
– Complex solutions that handles high-conflict 

scenarios with a strict ”ticket” order.

– High overhead, medium performance and medium 
scalability. 
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Other Believers

• Researchers. Since over 30 years ago, leading 
researchers have addressed the problems with critical 
sections and parellelism and sought for practical non-
blocking solutions.

• Real applications. Since several years, non-blocking 
technology are used in a wide range of applications. 
– Applications span from business and trade applications, music 

and synthesizer applications to even operating system kernels.

– The Java programming language now contains basic non-
blocking constructions.
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Real Applications: 

Example

• Splash-2
– A benchmark suite of several applications for 

Scientific Computing for multiprocessors.

– In 2002, researchers performed experiments with 
replacing simple lock-based constructions with 
corresponding non-blocking alternatives.

– Highly considerable increase in scalability for the 
communication-intensive applications!

• No increase in applications with very little communication (as 
it is there that non-blocking synchronization can improve). 
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Splash-2 

Benchmark Suite

58P

58P

58P

58P

32P
24P24P
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What we offer

• Custom-designed components.

– Wait-free/lock-free solutions for specific purposes.

• Software library (NOBLE).

– State-of-the-art implementations of the very latest 

wait-free/lock-free versions of common program 

components. 

• e.g. stack, queue, deque, priority queue, 

dictionary, list, snapshot, transactions etc.

Hardware

Application

NOBLE
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NOBLE Professional Edition:

Contents

• Memory Management
– Memory allocation

– Memory reclamation (garbage collection)

• Atomic primitives
– Single-word and Multi-word transactions.

• Common shared data structures
– Stack

– Queue

– Deque

– Priority Queue

– Dictionary

– Linked Lists

– Snapshots
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NOBLE Professional Edition:

Design

• Easy to use. Hides the underlying complexity and 
shows a common and simple interface.

• Versatile. Contains lock-based as well as lock-free/wait-
free implementations of each component.

• Efficient. Designed for best possible performance.

• Object-oriented. Designed in C, and also provided with 
a generic interface in C++.

• Configurable. A lot of optional parameters and 
functionalities that can be set/tuned to meet specific 
needs.
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NOBLE Professional Edition:

Example (C)

Thread 2

Globals

Thread 1

Main

Thread

1
Queue

Thread

2
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NOBLE Professional Edition:

Example (C++)

Thread 2

Globals

Thread 1

Main

Thread

1
Queue

Thread

2
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How we work

• Practical

• Efficient

Algorithmic

Design
Correctness

Implementation
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How we work

• Algorithm design
– We are experts in designing efficient non-blocking algorithms 

suited for practice.

• Correctness
– We create proofs of relevant correctness criteria using analytical 

and mathematical-style readable text, that cover all possible 
cases of concurrency and interleavings of program statements.

• Implementation
– Implementation of algorithms in real program code involves 

many details that need deep understanding of the corresponding 
algorithm in order to properly inherit the correctness and 
performance from it.
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Areas of possible non-

blocking applications

• Embedded systems
– Enhanced predictability and simpler development.

• Scientific computing
– Increased scalability gives results faster.

• Business and support systems
– Handle more transactions per time unit.

• IT and telecommunication
– Make more with same hardware.

• Games and entertainment
– Better performance with same (the users) hardware.
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Questions?

Please feel free to contact 

us for more information!


