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Abstract

We present an efficient and practical lock-free implemen-
tation of a garbage collection scheme based on reference
counting aimed for the use with arbitrary lock-free dynamic
data structures. The scheme guarantees the safety of lo-
cal as well as global references, supports arbitrary memory
reuse, uses atomic primitives which are available in mod-
ern computer systems and provides an upper bound on the
memory prevented for reuse. To the best of our knowledge,
this is the first lock-free algorithm that provides all of these
properties. Experimental results indicate significant perfor-
mance improvements for lock-free data structures that re-
quire strong garbage collection.

Keywords: reference counting, garbage collection, lock-
free, shared memory.

1 Introduction

Memory management is essential for building dynamic
concurrent data structures. Concurrent algorithms for data
structures and related memory management are commonly
based on mutual exclusion. However, mutual exclusion
causes blocking and can consequently incur serious prob-
lems as deadlocks, priority inversion or starvation. Re-
searchers have addressed these problems by introducing
non-blocking synchronization algorithms, which are not
based on mutual exclusion. Lock-free algorithms are non-
blocking, and guarantee that always at least one operation
can progress, independently of the actions taken by the con-
current operations. Wait-free [3] algorithms are lock-free,
and moreover guarantee that all operations can finish in a
finite number of their own steps, regardless of the actions
taken by the concurrent operations. It is important in non-
blocking algorithms that the effects of the concurrent oper-
ations can be observed by the involved processes in a con-
sistent manner. The common consistency requirement is
called linearizability [6].

In this paper we are focusing on practical and efficient
memory management in the context of lock-free dynamic
data structures. For an operation of an algorithm to be lock-
free, all sub-operations must be at least lock-free. Conse-
quently, lock-free dynamic data structures typically require
lock-free memory management. The memory management
problem is normally divided into the sub-problems of dy-
namic memory allocation versus garbage collection. Valois
as well as Michael and Scott [22, 13] presented a mem-
ory allocation scheme for fixed-sized memory segments;
this scheme has to be used in combination with the cor-
responding garbage collection scheme. Lock-free memory
allocation schemes for general use have been presented by
Michael [12] and Gidenstam et al. [2].

Various lock-free garbage collection schemes have been
presented in the literature. Michael [10, 11] proposed the
hazard pointer algorithm that focuses on local references. A
similar scheme has been proposed by Herlihy et al. [5]; this
scheme uses unbounded tags and is based on the double-
width CAS atomic primitive, a compare-and-swap opera-
tion that can atomically update two adjacent memory words,
which is available in some 32-bit architectures, but only
in very few of the current 64-bit architectures. As these
schemes only guarantee the safety of local pointers from
the threads, they cannot support arbitrary lock-free algo-
rithms that might require to always be able to trust global
references (i.e. pointers from within the data structure) to
objects. This constraint can be strong and restrictive, and
causes the data structure algorithms to retry traversals in the
possibly large data structures, with resulting large perfor-
mance penalties that increase with the level of concurrency.

Garbage collection schemes that are based on reference
counting can guarantee the safety of global as well as local
references to objects. Valois et al. [22, 13] presented a lock-
free reference counting scheme that can be implemented us-
ing available atomic primitives, though it is limited to be
used only with the corresponding algorithm for memory al-
location. Detlefs et al. [1] presented a scheme that allows
also arbitrary reuse of reclaimed memory, but it is based
on DCAS, which is a double-word compare-and-swap op-
eration that can atomically update two arbitrary memory
words, which is not available on any modern architecture.
Herlihy et al. [4, 15] presented a modification of the previ-
ous scheme such that it only uses CAS (compare-and-swap)
for the reference counting part. However, this scheme relies
on another scheme that itself requires double-width CAS1.
It has been identified in [13] that reference counting tech-
niques can potentially cause a reference from a thread to
block (due to the ability of creating recursive references)
arbitrarily number of nodes to be reclaimed.

In the context of wait-free memory management, a wait-
free extension of Valois’ scheme has been presented by Sun-
dell [18, 17]. Hesselink and Groote [7, 8] has presented a
wait-free memory management scheme that is restricted to
the specific problem of sharing tokens.

This paper combines the strength of reference counting
with the efficiency of hazard pointers, into a general lock-
free reference counting scheme, with the aim of keeping
only the advantages of the involved techniques while avoid-
ing the respective drawbacks. Our new lock-free garbage
collection scheme is lock-free and linearizable, is compat-
ible with arbitrary schemes for memory allocation, can be
implemented using commonly available atomic primitives
and guarantee the safety of local as well as global refer-

1A compare-and-swap operation that can atomically update two adja-
cent memory words is available in some 32-bit architectures, but only in
very few of the current 64-bit architectures.
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Figure 1. Shared Memory Multiprocessor Sys-
tem Structure

ences. We also show how to bound the amount of memory
that can be temporarily held by any thread.

The rest of the paper is organized as follows. In Section
2 we describe the type of systems that our implementation
is aiming for. Section 3 describes the specifics of the prob-
lem of garbage collection we are focusing on. The actual
algorithm is described in Section 4. In Section 5 we define
the precise semantics of the operations on our implementa-
tion, and show the correctness of our algorithm by proving
the lock-free and linearizability properties as well as prov-
ing an upper bound of the memory that can be temporarily
held for reclaiming by our scheme. Section 6 presents an
experimental evaluation of the new scheme in context of a
lock-free data structure. We conclude the paper with Sec-
tion 7.

2 System Description

A typical abstraction of a shared memory multi-
processor system configuration is depicted in Figure 1.
Each node of the system contains a processor together with
its local memory. All nodes are connected to the shared
memory via an interconnection network. A set of co-
operating tasks is running on the system performing their
respective operations. Each task is sequentially executed
on one of the processors, while each processor can serve
(run) many tasks at a time. The co-operating tasks, possi-
bly running on different processors, use shared data objects
built in the shared memory to co-ordinate and communi-
cate. Tasks synchronize their operations on the shared data
objects through sub-operations on top of a cache-coherent
shared memory. The shared memory may not though be
uniformly accessible for all nodes in the system; proces-
sors can have different access times on different parts of the
memory.

The shared memory system should support atomic read
and write operations of single memory words, as well as
stronger atomic primitives for synchronization. In this pa-
per we use the Fetch-And-Add (FAA) and the Compare-
And-Swap (CAS) atomic primitives; see Figure 2 for a de-
scription. These read-modify-write style of operations are

procedure FAA(address:pointer to word, number:integer)
atomic do

*address := *address + number;

function CAS(address:pointer to word, oldvalue:word,
newvalue:word):boolean

atomic do
if *address = oldvalue then

*address := newvalue;
return true;

else return false;

Figure 2. The Fetch-And-Add (FAA) and
Compare-And-Swap (CAS) atomic primitives.

available on most common architectures or can be easily
derived from other synchronization primitives [14] [9].

3 Problem Description

In this paper we are aiming to solve the garbage collec-
tion problem in the context of dynamic lock-free data struc-
tures. Lock-free data structures typically consist of a set
of memory segments, called nodes that each contain arbi-
trary data. These nodes are interconnected by referencing
each other in an arbitrary pattern. The references are typi-
cally implemented by using pointers that can identify each
individual node by the mean of memory addresses. Each
node may contain an arbitrary number of pointers, called
links, that reference other nodes. The operation to follow
the referenced node through a link is called dereferencing.
Some nodes are typically always part of the data structure,
all others nodes are part of the data structure when they are
referenced by a node that itself is a part of the data struc-
ture. In a dynamic and concurrent data structure, arbitrary
nodes can continuously and concurrently be added or re-
moved from the data structure. As systems have limited
amount of memory, the occupied memory of these nodes
needs to be dynamically allocated and reclaimed from/to
the system.

In a sequential implementation of a data structure, the
memory of a node is typically explicitly reclaimed to the
system when the last reference to it has been removed, i.e.
when the node has been deleted. In a concurrent environ-
ment this should also include possible local references to a
node that any thread might have, as the possible access to
the memory of a reclaimed node might be fatal to the cor-
rectness of the data structure and/or the whole system. The
logical unit that correctly decides about reclaiming is called
the garbage collector and should thus have the following
property:

Property 1 The garbage collector should only reclaim pos-
sible garbage that is not part of the data structure and for
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Guarantees the Bounded number of Compatible with Suffices with
safety of shared unreclaimed deleted standard memory single-word

references (Property 5) nodes (Property 2) allocators (Property 4) compare-and-swap

New algorithm Yes Yes Yes Yes
Detlefs et al. [1] Yes No e Yes No a

Herlihy et al. [5] No Yes Yes No b

Herlihy et al. [4, 15] Yes No e Yes No c

Michael [10, 11] No Yes Yes Yes d

Valois et al. [22, 13] Yes No e No Yes

aThe LFRC algorithm uses the double-word compare-and-swap (DCAS) atomic primitive.
bThe pass-the-buck (PTB) algorithm uses the double-width compare-and-swap atomic primitive.
cThe SLFRC algorithm is based on the pass-the-buck (PTB) algorithm, and thus uses double-width compare-and-swap.
dThe hazard pointer algorithm uses only atomic reads and writes.
eThese reference count-based schemes allow arbitrary long chains of deleted nodes that recursively reference each other to be created. In addition,

deleted nodes that cyclically reference each other (i.e. cyclic garbage) will be not be reclaimed ever.

Table 1. Properties of different approaches to non-blocking memory management.

which future access by any thread is not possible.

It should also always be possible to predict the maximum
amount of memory that is used by the data structure, thus
adding this requirement to the garbage collector:

Property 2 At any time, there should exist an upper bound
on the number of nodes that is not part of the data structure,
but not yet reclaimed to the system.

In real implementations of a garbage collector (GC)
these properties can be very hard to achieve, as local ref-
erences to nodes might not be accessible globally (e.g. they
might be stored in processor registers). Therefore imple-
mentations of GC’s typically need to interact with the in-
volved threads and put restrictions on the access to the
nodes, e.g. by providing special operations for dereferenc-
ing links and demanding that the data structure implemen-
tation explicitly calls the garbage collector when a node has
been deleted.

Moreover, as the underlying data structures of interest
are lock-free and typically also linearizable, the garbage
collector also has to guarantee these features:

Property 3 All operations of the garbage collector for
communication with the underlying data structure imple-
mentation should be lock-free and linearizable.

In order to minimize the whole system’s total amount of
occupied memory for the various data structures, we some-
time would like to fulfill the following property:

Property 4 The memory that is reclaimed by the garbage
collector should be accessible for any arbitrary future
reuse; i.e. the garbage collector should be compatible with
the system’s default memory allocator.

In a concurrent environment it might frequently occur
that a thread is holding a local reference to a node that has

structure Node
mm_ref: integer /* Initially 0 */
mm_trace: boolean /* Initially false */
mm_del: boolean /* Initially false */
... /* Arbitrary user data and links follows */
link[NR_LINKS_NODE]: pointer to Node /* initially NULL */

Figure 3. The Node structure

been deleted (i.e. removed from the data structure) by some
other thread. In these cases it may be very useful for the
first thread to be able to use the deleted node’s links, e.g. in
search procedures in large data structures:

Property 5 A thread that has a local reference to a node,
should also be able to dereference all of the links that are
contained in that node.

The new algorithm in this paper fulfills all of these prop-
erties in addition to the property of only using atomic primi-
tives that are commonly available in modern systems. Table
1 shows a comparison of the fulfilled properties with previ-
ously presented lock-free garbage collection schemes. All
of the schemes fulfill properties 1 and 3, whereas only a
subset of the other properties are met by the previously pre-
sented schemes.

4 The New Lock-Free Algorithm

In order to fulfill all of the requested properties in Section
3 as well as providing an efficient and practical method, our
aim is to devise a reference counting methods which can
also employ the hazard pointer (HP) scheme of Michael
[10, 11]. Roughly speaking, hazard pointers are used for
guaranteeing the safety of local references and reference
counts for guaranteeing the safety of internal links in the
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data structure. Thus, the reference count of each node
should indicate the number of globally accessible links that
reference that node. Figure 3 describes the node structure
as it is used in our algorithm. As in the HP scheme, each
thread maintains a list of nodes that are deleted but not
yet reclaimed, and this list is scanned for possible recla-
mation when its length has reached a certain threshold (i.e.
THRESHOLD_2). Some of the deleted nodes might be
prevented from reclamation because of a fixed number of
hazard pointers, while some deleted nodes might be pre-
vented because of a positive reference count adherent to
links. Thus, it is important to keep the number of refer-
ences to deleted nodes from links to a minimum. Before we
continue with the techniques for bounding the size of the
deletion lists, we introduce an assumption about what could
be required by the lock-free data structure algorithm:

Assumption 1 For each of the links in a deleted node that
reference a deleted node, it should be possible to replace it
with a reference to an active node, with retained semantics
for any of the involved threads.

The intuition behind this assumption lays behind an ob-
servation why links of a deleted node should be useful to
dereference by a thread that has a local reference to it. The
thread with a local reference to a deleted node surely wants
to find an appropriate active node and therefore takes ad-
vantage of the links. If the corresponding reference also ad-
heres to a deleted node, the previous step is repeated. From
the point of view of the thread of interest, it would not make
any difference if some other thread helped with the proce-
dure and already made sure that the links of the deleted node
all references active node. The procedure of replacing the
links of a deleted node with references to active nodes is
called clean-up.

As described earlier, besides hazard pointers, nodes in
the deletion lists are possibly prevented from reclamation
by links of other deleted nodes. These nodes might be in
the same deletion list or in some other thread’s deletion list.
For this reason, all threads’ deletion lists are accessible for
reading by any thread. When the length of the deletion list
reaches a certain threshold (THRESHOLD_1) the thread
performs a clean-up of all the nodes in its deletion list. If all
of the nodes are still prevented from reclamation, this must
be due to nodes in some other thread’s deletion list, and
thus the thread tries to perform a clean-up of all of the other
threads’ deletion lists as well. As this procedure is repeated
until the length of the deletion list is below the thresh-
old, the amount of deleted nodes that are not yet reclaimed
is bounded. The actual calculation of THRESHOLD_1
is described in Appendix 5.2. The threshold THRESH-
OLD_2 is set according to the HP scheme or less or equal
than THRESHOLD_1.

4.1 Application Programming Interface

The following functions are defined for safe handling of
the reference counted nodes:

function DeRefLink(link:pointer to pointer to Node):
pointer to Node

procedure ReleaseRef(node:pointer to Node)
function CompareAndSwapRef(link:pointer to pointer to

Node, old:pointer to Node, node:pointer to Node): boolean
procedure StoreRef(link:pointer to pointer to Node,

node:pointer to Node)
function NewNode:pointer to Node
procedure DeleteNode(node:pointer to Node)

The function DeRefLink safely de-references a given
link, and sets a hazard pointer to the de-referenced node,
thus guaranteeing the future safety to access the returned
node. The procedure ReleaseRef should be called when a
given node will not be accessed by the current thread any-
more. It will clear the corresponding hazard pointer.

To update a link for which there might be concurrent
updates to the link, the function CompareAndSwapRef
should be used, which gives result whether the update was
successful or not. The procedure will make sure that any
thread that calls DeRefLink on the link can safely do so,
if the thread has a hazard pointer reference to the node
which contains the link. The requirements are that the call-
ing thread of CompareAndSwapRef should have a hazard
pointer to the given node that should be stored.

To update a link for which there cannot be any concur-
rent updates the procedure StoreRef should be called. The
procedure will make sure that any thread that calls DeRe-
fLink on the link can safely to so, if the thread has a haz-
ard pointer reference to the node which contains the link.
The requirements are that the calling thread of StoreRef
should have a hazard pointer to the given node that should
be stored, and that no other thread will possibly write con-
currently to the link (otherwise CompareAndSwapRef
should be invoked instead).

The function NewNode allocates a new node, sets a
free hazard pointer to it for guaranteeing the future safety
for access, and then returns it. The procedure DeleteN-
ode should be called when a node is removed from the data
structure and which memory should be possible to reclaim
for reuse. The user operation that called DeleteNode is
responsible for removing all references to the deleted node
from the active nodes in the data-structure. This is simi-
lar to what is required when using a memory allocator in
a sequential data-structure. The memory manager will not
reclaim the deleted node until it is safe to do so.

In Section 4.4 we give an example of how these functions
can be used in the context of a lock-free queue algorithm
based on linked lists.
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/* Global variables */
HP[NR_THREADS][NR_INDICES]: pointer to Node;
DL_Nodes[NR_THREADS][THRESHOLD_1]: pointer to Node;
DL_Claims[NR_THREADS][THRESHOLD_1]: integer;
DL_Done[NR_THREADS][THRESHOLD_1]: boolean;
/* the above matrixes should be initialized to the values of
NULL, NULL, 0 respective false */

/* Local static variables */
threadId: integer; /* Unique and fixed number for each thread

between 0 and NR_THREADS-1 */
dlist: integer; /* Initially ⊥ */
dcount: integer; /* Initially 0 */
DL_Nexts[THRESHOLD_1]: integer;

/* Local temporary variables */
node, node1, node2, old: pointer to Node;
thread, index, new_dlist, new_dcount: integer;
plist: array of pointer to Node;

function DeRefLink(link:pointer to pointer to Node):
pointer to Node

D1 Choose index such that HP[threadId][index]=NULL
D2 while true do
D3 node := *link;
D4 HP[threadId][index] := node;
D5 if *link = node then
D6 return node;

procedure ReleaseRef(node:pointer to Node)
R1 Choose index such that HP[threadId][index]=node
R2 HP[threadId][index]:= NULL;

function CompareAndSwapRef(link:pointer to pointer to Node,
old: pointer to Node, node: pointer to Node): boolean

C1 if CAS(link,old,node) then
C2 if node �= NULL then
C3 FAA(&node.mm_ref,1);
C4 node.mm_trace:=false;
C5 if old �= NULL then FAA(&old.mm_ref,-1);
C6 return true;
C7 return false;

procedure StoreRef(link:pointer to pointer to Node,
node: pointer to Node)

S1 old := *link;
S2 *link := node;
S3 if node �= NULL then
S4 FAA(&node.mm_ref,1);
S5 node.mm_trace:=false;
S6 if old �= NULL then FAA(&old.mm_ref,-1);

function NewNode : pointer to Node
NN1 node := Allocate the memory of node (e.g. using malloc)
NN2 node.mm_ref := 0;
NN3 node.mm_del := false;
NN4 Choose index such that HP[threadId][index]=NULL
NN5 HP[threadId][index] := node;
NN6 return node;

Figure 4. Reference counting functions, part I

procedure DeleteNode(node:pointer to Node)
DN1 ReleaseRef(node);
DN2 node.mm_del := true; node.mm_trace := false;
DN3 Choose index such that DL_Nodes[threadId][index]=NULL
DN4 DL_Done[threadId][index]:=false;
DN5 DL_Nodes[threadId][index]:=node;
DN6 DL_Nexts[index]:=dlist;
DN7 dlist := index; dcount := dcount + 1;
DN8 while true do
DN9 if dcount = THRESHOLD_1 then CleanUpLocal();
DN10 if dcount ≥ THRESHOLD_2 then Scan();
DN11 if dcount = THRESHOLD_1 then CleanUpAll();
DN12 else break;

Figure 5. Reference counting functions, part II

procedure TerminateNode(node:pointer to Node,concurrent:boolean)
TN1 if not concurrent then
TN2 for all x where link[x] of node is reference-counted do
TN3 StoreRef(node.link[x],NULL);
TN4 else
TN5 for all x where link[x] of node is reference-counted do
TN6 repeat node1 := node.link[x];
TN7 until CompareAndSwapRef(&node.link[x],node1,NULL);

procedure CleanUpNode(node:pointer to Node)
CN1 for all x where link[x] of node is reference-counted do

retry:
CN2 node1:=DeRefLink(&node.link[x]);
CN3 if node1 �= NULL and node1.mm_del then
CN4 node2:=DeRefLink(&node1.link[x]);
CN5 CompareAndSwapRef(&node.link[x],node1,node2);
CN6 ReleaseRef(node2);
CN7 ReleaseRef(node1);
CN8 goto retry;
CN9 ReleaseRef(node1);

Figure 6. Callback functions

Callbacks

The following functions are callbacks that have to be de-
fined by the designer of each specific data structure:

procedure CleanUpNode(node:pointer to Node)
procedure TerminateNode(node:pointer to Node, concur-

rent:boolean)

The procedure TerminateNode will make sure that
none of the links in the given node will have any claim on
any other node. TerminateNode is called on a deleted node
when there are no claims from any other node or thread to
the node. 2

The procedure CleanUpNode will make sure that all
claimed references from the links of the given node will

2In principle this procedure could be provided by the memory manager
but in practice it is more convenient to let the user decide the memory
layout of the node records. All node records would still be required to start
with the mm_ref, mm_trace and mm_del fields.
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procedure CleanUpLocal()
CL1 index := dlist;
CL2 while index �= ⊥ do
CL3 node:=DL_Nodes[threadId][index];
CL4 CleanUpNode(node);
CL5 index := DL_Nexts[index];

procedure CleanUpAll()
CA1 for thread := 0 to NR_THREADS-1 do
CA2 for index := 0 to THRESHOLD_1-1 do
CA3 node:=DL_Nodes[thread][index];
CA4 if node �= NULL and not DL_Done[thread][index] then
CA5 FAA(&DL_Claims[thread][index],1);
CA6 if node = DL_Nodes[thread][index] then
CA7 CleanUpNode(node);
CA8 FAA(&DL_Claims[thread][index],-1);

procedure Scan()
SC1 index := dlist;
SC2 while index �= ⊥ do
SC3 node:=DL_Nodes[threadId][index];
SC4 if node.mm_ref = 0 then
SC5 node.mm_trace := true;
SC6 if node.mm_ref �= 0 then node.mm_trace := false;
SC7 index := DL_Nexts[index];
SC8 plist := ∅; new_dlist:=⊥; new_dcount:=0;
SC9 for thread := 0 to NR_THREADS-1 do
SC10 for index := 0 to NR_INDICES-1 do
SC11 node := HP[thread][index];
SC12 if node �= NULL then
SC13 plist := plist + node;
SC14 Sort and remove duplicates in array plist
SC15 while dlist �= ⊥ do
SC16 index := dlist;
SC17 node:=DL_Nodes[threadId][index];
SC18 dlist := DL_Nexts[index];
SC19 if node.mm_ref = 0 and node.mm_trace and node �∈ plist then
SC20 DL_Nodes[threadId][index]:=NULL;
SC21 if DL_Claims[threadId][index] = 0 then
SC22 TerminateNode(node,false);
SC23 Free the memory of node
SC24 continue;
SC25 TerminateNode(node,true);
SC26 DL_Done[threadId][index]:=true;
SC27 DL_Nodes[threadId][index]:=node;
SC28 DL_Nexts[index]:=new_dlist;
SC29 new_dlist := index;
SC30 new_dcount := new_dcount + 1;
SC31 dlist := new_dlist;
SC32 dcount := new_dcount;

Figure 7. Internal functions.

only point to active nodes, thus removing redundant pas-
sages through an arbitrary number of deleted nodes.

4.2 Auxiliary Procedures

Auxiliary functions that are defined for internal use by
the reference counting scheme:

procedure Scan()
procedure CleanUpLocal()

procedure CleanUpAll()

The procedure Scan will search through all not yet re-
claimed nodes deleted by this thread and reclaim only those
that does not have any matching hazard pointer and do not
have any counted references from any links inside of nodes.
The procedure CleanUpLocal will try to remove redun-
dant claimed references from links in deleted nodes that
has been deleted by this thread. The procedure CleanU-
pAll will try to remove redundant claimed references from
links in deleted nodes that has been deleted by any thread.

4.3 Detailed Algorithm Description

DeRefLink (Fig. 4), first reads the pointer to a node
stored in *link at line D3. Then at line D4 it sets one of
the thread’s hazard pointers to point to the node. At line D5
it verifies that the link still points to the same node as before.
If *link still points to the node, it knows that the node is
still not yet reclaimed and that it cannot not be reclaimed
until the hazard pointer now pointing to it is released. If
*link has changed since the last read, it retries.

ReleaseRef (Fig. 4), removes this thread’s hazard
pointer pointing to node. Note that if the node node is
deleted, has a reference count of zero and no other hazard
pointers are pointing to it, the node can now be reclaimed
by Scan (invoked by the thread that called DeleteNode on
the node).

CompareAndSwapRef (Fig. 4), performs a common
CAS on the link and updates the reference counts of the
respective nodes accordingly. Line C4 notifies any concur-
rent Scan that the reference count of node has been in-
creased. Notice that the node node is safe to access dur-
ing CompareAndSwapRef since the thread calling Com-
pareAndSwapRef is required to have a hazard pointer
pointing to it. At line C5 the reference count of old is
decreased. The previous reference count must have been
greater than zero since *link referenced the node old.

StoreRef (Fig. 4), is valid to use only when there are
no concurrent updates of *link. After updating *link at
line S2 StoreRef increases the reference count of node at
line S4, which is safe since the thread calling StoreRef is
required to have a hazard pointer to the node node. Line
S5 notifies any concurrent Scan that the reference count of
node is non-zero. At line S6 the reference count of old
is decreased. The previous reference count must have been
greater than zero since *link referenced the node old.

NewNode (Fig. 4), allocates memory for the new node
from the underlying memory allocator and initializes the
header fields each node should have. It also sets a hazard
pointer to the node.

DeleteNode (Fig. 5), marks the node node as logi-
cally deleted at line DN2. Then at the lines DN3 to DN7
the node is inserted into this thread’s set of deleted but not
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yet reclaimed nodes. By clearing DL_Done at line DN4 be-
fore writing the pointer at line DN5 concurrent CleanUpAll
operations can access the node and tidy up its references.

If the number of deleted nodes in this thread’s set of
deleted but not yet reclaimed nodes is larger than or equal to
THRESHOLD_2 a Scan is performed which will reclaim
all nodes in the set that are not referenced by other nodes or
threads.

If the thread’s set of deleted but not yet reclaimed nodes
is now full, that is, it contains THRESHOLD_1 nodes, the
thread will first run CleanUpLocal at line DN9 to make
sure that all of its deleted nodes only points to nodes that
were alive when CleanUpLocal started. Then it runs Scan
at line DN10. If Scan is unable to reclaim any node at all
then the thread will run CleanUpAll , which cleans up the
sets of deleted nodes of all threads.

Callbacks

TerminateNode (Fig. 6), should clear all links in the node
node by writing NULL to the links in node. This is done
by using either CompareAndSwapRef or StoreRef de-
pending on whether there might be concurrent updates of
the these links or not.

CleanUpNode (Fig. 6), should make sure that none of
the links of the node node points to nodes that were deleted
before this invocation of CleanUpNode started.

Auxiliary procedures

Scan (Fig. 7), reclaims all nodes deleted by the current
thread that are not referenced by any other node or any haz-
ard pointer. To determine which of the deleted nodes that
can safely be reclaimed Scan first sets the mm_trace bit
of all deleted nodes that have reference count zero (lines
SC1 to SC7). The check at line SC6 ensures that the refer-
ence count was indeed zero when the mm_trace bit was
set.

Then Scan records all active hazard pointers of all
threads in plist (lines SC8 to SC14). In the lines SC15 to
SC30 Scan traverses all not yet reclaimed nodes deleted
by this thread. For each of these nodes the tests at line
SC19 determine if i) the reference count is zero, ii) the
reference count has consistently been zero since before the
hazard pointers were read (indicated by the mm_trace bit
being set) and iii) the node is not referenced by any hazard
pointer. If all three of these conditions are true, the node is
not referenced and Scan checks if there may be concurrent
CleanUpAll operations working on the node at line SC21.
If there are no such CleanUpAll operations Scan uses Ter-
minateNode to release all references the node might con-
tain and then reclaim the node (lines SC22 and SC23). In
case there might be concurrent CleanUpAll operations ac-
cessing the node Scan uses the concurrent version of Ter-

minateNode to set all of the node’s links to NULL. By
setting the DL_Done flag at line SC26 before the node is
reinserted into the set of unreclaimed nodes at line SC27
later CleanUpAll operations cannot prevent this node from
being reclaimed by a subsequent Scan.

CleanUpLocal (Fig. 7), traverses the thread’s list of
deleted but unreclaimed nodes and calls CleanUpNode on
each of them to make sure that their links do not reference
any nodes that were already deleted when CleanUpLocal
started.

CleanUpAll (Fig. 7), traverses the DL_Nodes ar-
rays of all threads and try to make sure that none of the
nodes it finds contains links to nodes that were already
deleted when CleanUpAll started. The tests at line CA4
prevent CleanUpAll from needlessly interfere with Scan
for nodes that have no references left. The test at line
CA6 prevents CleanUpAll from accessing a node that
Scan has already reclaimed. If the node is still present in
DL_Nodes[thread][index] at line CA6 then a con-
current Scan accessing this node must be before line SC20
or be after line SC27 without having reclaimed the node.

4.4 Example Application

The application of the new algorithm for memory man-
agement to lock-free algorithms for dynamic data structures
can be done straight forward in a similar manner to previ-
ously presented memory management schemes. Figure 8
shows the lock-free queue algorithm by Valois et al. [21, 13]
as it would be integrated with the new algorithm for mem-
ory management.

4.5 Algorithm Extensions

For simplicity reasons, the algorithm in this paper is
described with a fixed number of threads. However, the
scheme can easily be extended for a dynamic number of
threads in a similar way as described for the HP scheme
in [11]. The global matrix of hazard pointers (HP) can be
turned into a linked list of arrays. The deletion lists can also
be linked into a global chain, and as the size of the dele-
tion lists changes, old redundant deletion lists can be safely
reclaimed by using an additional HP scheme for memory
management.

4.6 Algorithm Correctness and Bounds on Unre-
claimed Memory

Theorem 1 The algorithm implements a lock-free and lin-
earizable scheme for garbage collection.

Theorem 2 The number of deleted but not yet reclaimed
nodes in the system is bounded from above by

N2 · (k + lmax + α + 1),
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structure QNode
mm_ref: integer
mm_trace: boolean
mm_del: boolean
next: pointer to QNode
value: pointer to Value

/* Global variables */
head, tail:pointer to QNode

procedure InitQueue()
IQ1 node := NewNode();
IQ2 node.next := NULL;
IQ3 head := NULL; tail:= NULL;
IQ3 StoreRef(&head,node);
IQ4 StoreRef(&tail,node);

function Dequeue():pointer to Value
DQ1 while true do
DQ2 node1 := DeRefLink(&head);
DQ3 next := DeRefLink(&node2.next);
DQ4 if next = NULL return NULL;
DQ5 if CompareAndSwapRef(&head,node1,next) then break;
DQ6 ReleaseRef(node1); ReleaseRef(next);
DQ7 DeleteNode(node1);
DQ8 value := next.value; ReleaseRef(next);
DQ9 return value;

procedure Enqueue(value:pointer to Value)
EQ1 node := NewNode();
EQ2 node.next := NULL; node.value := value;
EQ3 old := DeRefLink(&tail); prev := old;
EQ4 repeat
EQ5 while prev.next �= NULL do
EQ6 prev2 := DeRefLink(&prev.next);
EQ7 if old �= prev then ReleaseRef(prev);
EQ8 prev := prev2;
EQ9 until CompareAndSwapRef(&prev.next,NULL,node);
EQ10 CompareAndSwapRef(&tail,old,node);
EQ11 if old �= prev then ReleaseRef(prev);
EQ12 ReleaseRef(old); ReleaseRef(node);

Figure 8. Example of a Queue algorithm using
the new memory management scheme.

where N is the number of threads in the system, k is the
number of hazard pointers per thread, lmax is the maximum
number of links a node can contain and α is the maximum
number of links in live nodes that may transiently point to a
deleted node.

The corresponding proofs of the above theorems are left
to Section 5, where they are presented using a series of lem-
mas.

5 Correctness Proof

In this section we present the correctness proof of our al-
gorithm. We first prove that our algorithm does not reclaim

memory that could still be accessed, then we prove an up-
per bound on the amount of such deleted but unreclaimed
garbage there can be and last we prove that the algorithm
is a linearizable and lock-free one [6]. A set of definitions
that will help us to structure and shorten the proof is first de-
scribed in this section. We start by defining the sequential
semantics of our operations.

Definition 1 Let Ft denote the state of the pool of free
nodes at time t. We interpret n ∈ Ft to be true when n
has been freed as per line SC23 in Scan. Any (preferably
lock-free) memory allocator can be used to manage the free
pool.

Let n ∈ HPt(p) denote that thread p has a verified haz-
ard pointer set to point to node n at time t. A verified hazard
pointer is one that has been or will be returned by a success-
ful DeRefLink operation. The array of hazard pointers in
the implementation, the array HP, may also contain point-
ers temporarily set by unsuccessful DeRefLink operations,
but these are not considered as part of the HPt(p) sets.

Let n ∈ DLt(p) denote that node n is deleted and is
awaiting reclamation in the dlist of thread p at time t.

Let Delt(n) denote that the node n is marked as logi-
cally deleted at time t. The deletion mark is not removed
until the node is returned to the free pool.

Let Links(n) denote the set of shared links (pointers)
present in node n.

Let lx �→t nx denote that the shared link lx points to
node nx at time t.

Let Reft(n) denote a set containing the shared links that
point to the node n at time t. A shared link is either a global
shared variable visible to the application or a pointer vari-
able residing inside a node. Specifically, the elements in
the per thread arrays of hazard pointers, HP, and the per
thread arrays of deleted nodes, DL_Nodes, are not consid-
ered as shared links, since these are internal to the memory
management.

The operations that are of interest for linearizability
are DeRefLink(DRL), ReleaseRef(RR), NewNode(NN),
DeleteNode(DN) and CompareAndSwapRef(CASR).

For the safety and correctness of the memory man-
agement the following additional internal operations are
also of interest: TerminateNode(TN), Scan(SCAN),
CleanUpNode(CUN), CleanUpLocal(CUL), CleanU-
pAll(CUA).

In the following expressions which define the sequential
semantics of our operations, the syntax is S1 : O1, S2,
where S1 is the conditional state before the operation O1

and S2 is the resulting state after the operation has been
performed.

DeRefLink

∃n1.l1 �→t1 n1 : DRL(l1) = n1, n1 ∈ HPt2(pcurr) (1)
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l1 �→t1 ⊥ : DRL(l1) = ⊥, (2)

ReleaseRef

n ∈ HPt1(pcurr) : RR(n1), n /∈ HPt2(pcurr) (3)

NewNode

∃n1.n1 ∈ Ft1 :
NN() = n1,

n1 /∈ Ft2 ∧ Reft2(n1) = 0 ∧ ¬Delt2(n1)
∧n1 ∈ HPt2(pcurr)

(4)

DeleteNode

n1 ∈ HPt1(pcurr) :
DN(n1),

Delt2(n1) ∧ n1 ∈ DLt2(pcurr)
∧n1 /∈ HPt2(pcurr)

(5)

CompareAndSwapRef

l1 �→t1 ⊥ ∧ n2 ∈ HPt1(pcurr) :
CASR(l1,⊥,n2) = True,

l1 �→t2 n2 ∧ l1 ∈ Reft2(n2)∧
n2 ∈ HPt2(pcurr)

(6)

∃n1 . l1 �→t1 n1 ∧ n2 = n1 :
CASR(l1,n2,⊥) = True,

l1 �→t2 ⊥ ∧ l1 /∈ Reft2(n2)
(7)

∃n1 . l1 �→t1 n1 ∧ n2 = n1∧
n3 ∈ HPt1(pcurr) ∧ l1 ∈ Reft1(n2) :

CASR(l1,n2,n3) = True,
l1 �→t2 n3 ∧ l1 /∈ Reft2(n2)∧
l1 ∈ Reft2(n3) ∧ n3 ∈ HPt2(pcurr)

(8)

∃n1 . l1 �→t1 n1 ∧ n1 �= n2 ∧ n3 ∈ HPt1(pcurr) :
CASR(l1,n2,n3) = False,

l1 �→t2 n1 ∧ n3 ∈ HPt2(pcurr)
(9)

Scan

:
Scan(),
∀ni ∈ DLt1(pcurr).(ni ∈ Ft2∧
(∀nx s.t. lx �→t1 nx ∧ lx ∈ Links(ni).
lx /∈ Reft2(nx)) ∨ (∃pj .ni ∈ HPt1(pj))∨
(∃nj .nj /∈ Ft1 ∧ ∃lx ∈ Links(nj).lx �→t1 ni)

(10)
TerminateNode (Implemented by the application pro-

grammer).

n1 ∈ DLt1(pcurr) :
TerminateNode(n1, c),

∀lx ∈ Links(n1).(lx �→t2 ⊥∧
∀nx s.t. lx �→t1 nx . lx �∈ Reft2(nx)

(11)

CleanUpNode (Implemented by the application pro-
grammer).

∃pi.n1 ∈ DLt1(pi) ∧ Delt1(n1) :
CleanUpNode(n1),

∀lx ∈ Links(n1).(lx �→t2 ⊥∨
(∃nx.lx �→t2 nx ∧ ¬Delt1(nx)))

(12)

CleanUpLocal

:
CleanUpLocal(),

∀ni ∈ DLt1(pcurr).(∀lx ∈ Links(ni).
lx �→t2 ⊥ ∨ (∃nx.lx �→t2 nx ∧ ¬Delt1(nx)))

(13)
CleanUpAll

:
CleanUpAll(),
∀pi.(∀nj ∈ DLt1(pi).(∀lx ∈ Links(nj).
lx �→t2 ⊥ ∨ (∃nx.lx �→t2 nx ∧ ¬Delt1(nx))))

(14)
StoreRef (Can only be used to update links in nodes that

are inaccessible to all other threads.)

l1 �→t1 ⊥ ∧ n2 ∈ HPt1(pcurr) :
SR(l1,n2),

l1 �→t2 n2 ∧ l1 ∈ Reft2(n2) ∧ n2 ∈ HPt2(pcurr)
(15)

∃n1.l1 �→t1 n1 ∧ n2 ∈ HPt1(pcurr) :
SR(l1,n2),

l1 �→t2 n2 ∧ l1 /∈ Reft2(n1)∧
l1 ∈ Reft2(n2) ∧ n2 ∈ HPt2(pcurr)

(16)

Definition 2 A node n is said to be reclaimable at time t iff
Reft(n) = ∅ and ∀p.n /∈ HPt(p) and Delt(n).

5.1 Safety

Lemma 1 If a node n is reclaimable at time t1 then
Reft(n) = ∅ for all t ≥ t1.

Proof: (sketch) Assume towards a contradiction that a
node n was reclaimable at time t1 and that later at time t2
Ref(n)t2 �= ∅. From the definition of reclaimable follows
that at time t1 there were no shared links pointing to n and
no process had a hazard pointer to n.

Then, clearly, n has to have been stored to some shared
link l after time t1 and before t2. There are only two op-
erations that can update a shared link: StoreRef (SR) and
CompareAndSwapRef (CASR). However both of these
operations require that process issuing the operation has a
hazard pointer to n at that time. There are two cases:
i) The process has had a hazard pointer set to n since al-
ready before time t1. This is impossible since there were no
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hazard pointers to n at time t1.
ii) The process set the hazard pointer to n at a time later
than t1. This is impossible as the only way to set a hazard
pointer to an existing node is the DeRefLink operation and
it requires that there is a shared link pointing to n to deref-
erence and at time t1 there are no such links. (See also the
linearizability proof for DeRefLink )

So since there cannot be any processes capable of using
StoreRef or CompareAndSwapRef to update a link to
point to n at time t1 or later we have that Reft(n) = ∅ for
all t ≥ t1. �

Lemma 2 A node n returned by a DeRefLink(l1) op-
eration performed by a process p is not reclaimable
and cannot become reclaimable before a corresponding
ReleaseRef(n) operation is performed by the same pro-
cess.

Proof: (sketch) The node n is not reclaimable when DeRe-
fLink returns because p has set a hazard pointer to point to
n at line D4. Furthermore, line D5 verifies that n is ref-
erenced by l1 also after the hazard pointer was set which
guarantees that n cannot have become reclaimable between
line D3 and D4 since n is still referenced by a shared link.34

�

Lemma 3 The mm_ref field together with the hazard
pointers provide a safe approximation of the Reft(n) set.

Proof: (sketch) The reference count field, mm_ref, in each
node is an approximation of the set of links referencing n
Ref(n). As such the mm_ref field of a node n is only
guaranteed to be accurate when there are no ongoing5 oper-
ations concerning n. The only operations that may change
the mm_ref field of a node n is CompareAndSwapRef
and StoreRef .

For the memory management scheme the critical aspect
of the Ref(n) set is to know whether it is empty or non-
empty to determine if the node is reclaimable or not. In par-
ticular, the important case is when the mm_ref field is to be
increased, since delaying a decrease of the reference count
will not compromise the safety of the memory management
scheme.

Thus, although the mm_ref field of a node n to be stored
in a shared link by a CompareAndSwapRef or StoreRef
operation is not increased in the same atomic time instant

3Note 1: Between D3 and D5 n might have been moved away from l1
and then moved back again.

4Note 2: Between D3 and D4 the “original” n could actually have been
removed and reclaimed and then the same memory could be reused for a
new node n which is stored in l1 before D5. This is no problem as the
“new” n is what the DeRefLink really returns.

5Consider any crashed operations as ongoing.

as the operation takes effect, that does not matter for the
safety of the memory management scheme since the node
is clearly not reclaimable during the duration of the opera-
tion anyway, since the process performing the operation is
required to have a hazard pointer set to n. �

Lemma 4 The operation Scan will never reclaim a node n
that is not reclaimable.

Proof: (sketch) Scan is said to reclaim a node n when it
is returned to the pool of free memory, which takes place at
line SC23.

Assume that Scan reclaimed a node n at time t3 and let
time t1 and t2 denote the time Scan executed line SC5 and
line SC19 for the node n, respectively.

First, note that there exists no process p such that n ∈
HP (p) during the whole interval between t1 and t2 since
such a hazard pointer would be detected by Scan (lines SC9
- SC13). Consequently, any process that is able to access n
after time t3 must have dereferenced (with DeRefLink ) a
shared link pointing n after time t1.

Second, since Scan is reclaiming the node we know that
the mm_trace field of n which were set to true at line SC5
and the mm_ref field which was verified to be zero at line
SC6 still had those values when line SC19 was reached.
This implies that:
i) There were no StoreRef or CompareAndSwapRef op-
erations to store n in a shared link that started before t1
and had not finished before t2, since the hazard pointers to
n these operations require would have been detected when
Scan searched the hazard pointers at lines SC9 - SC13.
ii) There were no StoreRef or CompareAndSwapRef
operations to store n in a shared link that finished be-
tween t1 and t2, as a such operation would have cleared
the mm_trace field and thereby caused the comparison at
SC19 to fail.
Therefore, there were no ongoing StoreRef or Compare-
AndSwapRef operation to store n in a shared link at
the time Scan executed line SC5 and, consequently, as
these operations are the only ones that can increase the
mm_ref field, we have Reft1(n) = ∅. Further, because
of ii) there cannot have been any StoreRef or Compare-
AndSwapRef operation to store n in a shared link that
started and finished between t1 and t2.

Since Reft1(n) = ∅ no DeRefLink operation can fin-
ish by successfully dereference n after time t1 unless n is
stored to a shared link after time t1. However, as we have
seen above such a store operation must begins after time
t1 and finish after time t2 and the process performing it
must therefor, by our first observation that no single process
could have held a hazard pointer to n during the whole in-
terval between t1 and t2, have dereferenced n after t1. This
is a clearly a contradicition and therefor it is impossible for
any process to successfully dereference n after time t1.
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From the above we have that Reft(n) = ∅ for t ≥ t1
and ∀p . n /∈ HPt(p) for t ≥ t2 and therefor, since t3 >
t2 > t1, n is reclaimable at time t3 . �

Lemma 5 The operation Scan will never reclaim a node n
that is accessed by a concurrent CleanUpAll operation..

Proof: (sketch) Before reclaiming the node n stored at
position i in its DL_Nodes array Scan writes NULL
into DL_Nodes[i] (line SC20) and then checks that
DL_Claims[i] is zero (line SC21).

Before accessing the node n the CleanUpAll oper-
ation reads n from DL_Nodes[i] (line CA3), then in-
creases DL_Claims[i] (line CA5) and then verifies that
DL_Nodes[i] still contains n (line CA6).

Now, for a concurrent CleanUpAll operation to also ac-
cess n it has to do both reads of DL_Nodes[i] (line CA3
and line CA5) before Scan performs line SC20, but then
DL_Claims[i] has been increased (line CA3) and Scan will
detect this at line SC21 and will not reclaime the node.

If, on the other hand, Scan reads a claim count of 0 at
line SC21, then the concurrent CleanUpAll operation will
read NULL from DL_Nodes[i] at line CA6 and will not
access the node. �

5.2 Proof of the bound on the number of deleted
but unreclaimed nodes

Theorem 3 For each thread pi the maximum number of
deleted but not reclaimed nodes in DL(pi) is at most
N · (k+ lmax +α+1), where N is the number of threads in
the system, k is the number of hazard pointers per thread,
lmax is the maximum number of links a node can contain
and α is the maximum number of links in live nodes that
may transiently point to a deleted node. (The number de-
pends on the application.)

Proof: (sketch) The only operation that increases the size
of DL(pi) is DeleteNode and when |DL(pi)| reaches
THRESHOLD_1 it runs CleanUpAll before attempting to
reclaim nodes.

First consider the case where there are no concurrent
DeleteNode operations by other threads. Then, after
CleanUpAll , there cannot be any deleted nodes that point
to nodes in DL(pi) left. So, what may prevent pi from re-
claiming one particular node in DL(pi)? The node might
have: i) a hazard pointer pointing to it, or ii) there might be
some live nodes still pointing to it. The number of links in
live nodes, α, that might point to a deleted node depends
on the application data-structure using the memory man-
ager. We require that each application operation that deletes
a node must also remove all references to that node from
the live nodes of the data-structure before it is completed,

which ensures that there at all times are at most N · α links
in live nodes that point to deleted nodes. So, in the absence
of concurrent DeleteNode operations the maximum num-
ber of nodes in DL(pi) that a Scan is unable to reclaim is
N · (k + α).

In the case where there are concurrent DeleteNode op-
erations three more things of interest may occur: i) Addi-
tional nodes that might hold pointers to the nodes in DL(pi)
might be deleted after the start of CleanUpAll and prevent
Scan from reclaiming any node. However, in that case pi is
free to retry CleanUpAll and Scan again since some con-
current operation has made progress. ii) Some concurrent
DeleteNode operation may get delayed or crash, either be-
tween line DN2 and DN5 or between SC21 and SC22 in
its call to Scan which will “hide” one deleted node that
might contain links that point to nodes in DL(pi) from
pi’s CleanUpAll . In this way each other thread can pre-
vent pi from reclaiming up to lmax nodes in DL(pi). iii)
Finally, concurrent CleanUpAll operations might prevent
pi from reclaiming reclaimable nodes by claiming them for
performing CleanUpNode operations on them. However,
if such a node is encountered pi’s Scan will use Termi-
nateNode to set the links of the node to NULL and set the
DL_Done flag for the node, which prevents future CleanU-
pAll operations from preventing the node from being re-
claimed. If pi needs to retry the Scan, it can only be pre-
vented from reclaiming at most N of the reclaimable nodes
it failed to reclaim due to concurrent CleanUpAlls during
the previous Scan.

So, the maximum number of nodes in DL(pi) that pi

cannot reclaim is less than N (̇k + lmax + α + 1). �

Corollary 1 The cleanup threshold, THRESHOLD_1, used
by the algorithm should be set to N (̇k + lmax + α + 1).

Corollary 2 The number of deleted but not yet reclaimed
nodes in the system is bounded from above by

N2 · (k + lmax + α + 1),

where N is the number of threads in the system, k is the
number of hazard pointers per thread, lmax is the maximum
number of links a node can contain and α is the maximum
number of links in live nodes that may transiently point to a
deleted node.

5.3 Linearizability

Lemma 6 The DeRefLink (DRL(l1) = n1) operation is
atomic.

Proof: (sketch) A DeRefLink (DRL) operation has direct
interactions with CompareAndSwapRef (CASR) that tar-
gets the same link and the memory reclamation in Scan. A
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CASR operation takes effect before the DRL operation iff
the CAS instruction at line C1 is executed before *link is
read at line D5 in DRL.

A Scan that reads the hazard pointer set by DRL at line
D4 after it was set will not free the node dereferenced by
DRL (the test at line SC19 in Scan prevents this. If a con-
current Scan read the hazard pointer in question after it
was set by DRL then it will not free the node. If Scan read
the hazard pointer in question before it was set by DRL then
Scan will detect that the reference count of the node is non-
zero or has been non-zero during the execution of the Scan
operation. �

Lemma 7 The ReleaseRef (RR(n1)) operation is
atomic.

Proof: (sketch) The operation ReleaseRef takes effect at
line R2 when the hazard pointer to the node is set to NULL.

�

Lemma 8 The NewNode (NN() = n1) operation is
atomic if the memory allocator used to manage the pool of
free memory itself is linearizable.

Proof: (sketch) The operation NewNode takes effect when
the memory for the new node is removed from the pool of
free memory. For a linearizable memory allocator this will
take place at a well-defined time instant. �

Lemma 9 The DeleteNode (DN(n1)) operation is
atomic.

Proof: (sketch) The operation DeleteNode takes effect
when the node is marked as deleted at at line DN2. �

Lemma 10 The CompareAndSwapRef
(CASR(l1, n1, n2)) operation is atomic.

Proof: (sketch) The CompareAndSwapRef
(CASR(n1)) operation has direct interactions with
other CompareAndSwapRef (CASR) and DeRefLink
operations that targets the same link and with the memory
reclaimation in Scan.

A CASR operation takes effect when the CAS instruc-
tion at line C1 is executed. �

Lemma 11 The reclamation of a deleted node n by Scan
is atomic.

Proof: (sketch) Scan is said to reclaim a node n when it
is returned to the pool of free memory, which takes place at
line SC23. The node is safe to reclaim because the tests at
line SC19 guarantees that i) Scan found no hazard pointers
pointing to the node and, ii) the reference count of the node

has been consistently 0 since before the hazard pointers
were scanned. That ii) holds is ensured by the n.mm_trace
bit, which detects if a node, n, had Ref(n) = 0 when Scan
executed line SC4, but a pointer to it was later stored in a
shared link variable so that there were no hazard pointer
to it when Scan read them at line SC9 to SC13. Then,
this invocation of Scan will not attempt to reclaim the
node even if the shared link to the node is removed again,
since the n.mm_trace was cleared when the pointer to the
node was stored in a shared variable (either by a Compare-
AndSwapRef or a StoreRef ).

The test at line SC21 guarantees that there are no other
threads that might access the node as part of the CleanU-
pAll operation. A CleanUpAll operation verifies that the
node is still there at line CA6 after increasing the claim
counter at line CA5 before attempting to access the node.
If Scan reads a claim count of 0 at line SC21 then there are
no concurrent CleanUpAll operations that might access the
node, because they will read NULL at line CA6. �

Theorem 4 The algorithm implements a linearizable
garbage collector.

Proof: This follows from Lemmas 6, 7, 8, 9 and 10. �

5.4 Proof of the Lock-free Property

Lemma 12 With respect to the retries caused by synchro-
nization, one operation will always do progress regardless
of the actions by the other concurrent operations.

Proof: We now examine the possible execution paths of our
implementation. The operations ReleaseRef , NewNode
and CompareAndSwapRef do not contain any loops and
will thus always do progress regardless of the actions by the
other concurrent operations. In the remaining concurrent
operations there are several potentially unbounded loops
that can delay the termination of the operations. We call
these loops retry-loops. If we omit the conditions that are
because of the operations semantics (i.e. searching for the
correct criteria etc.), the loop retries when sub-operations
detect that a shared variable has changed value. This is de-
tected either by a subsequent read sub-operation or a failed
CAS. These shared variables are only changed concurrently
by other CAS sub-operations. The read operation in line
D5 will possibly fail because of a successful CAS operation
in lines C1, TN7 or CN5. Likewise, the CAS operations
in lines C1, TN7 or CN5 will possibly fail if one of the
other CAS operations has been successful. According to
the definition of CAS, for any number of concurrent CAS
sub-operations, exactly one will succeed. This means that
for any subsequent retry, there must be one CAS that suc-
ceeded. As this succeeding CAS will cause its retry loop
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to exit, and our implementation does not contain any cyclic
dependencies between retry-loops that exit with CAS, this
means that the corresponding DeRefLink operation or Ter-
minateNode suboperation will progress.

In the operation DeleteNode there are calls to three sub-
operations, CleanUpLocal , Scan and CleanUpAll which
contains loops, inside an unbounded loop. The loop in
the suboperation CleanUpNode, used by CleanUpLocal
and CleanUpAll , is bounded in the absence of concur-
rent DeleteNode operations because of Assumption 1. If
there are concurrent DeleteNode operations CleanUpN-
ode only their progress, i.e. that they set the mm_del bit
on additional nodes, might force the loop in CleanUpN-
ode to continue. So CleanUpNode is lock-free. The loops
in CleanUpAll are all bounded and the loop in CleanU-
pLocal and in Scan are bounded since the size of the
DL_Nodes list is bounded by Theorem 3. The loop in
DeleteNode is also bounded by the bound in Theorem 3.

Consequently, independent of any number of concurrent
operations, one operation will always progress. �

Theorem 5 The algorithm implements a lock-free garbage
collector.

Proof: Lemma 12 give that our implementation is lock-free.
�

6 Experimental Evaluation

We have performed experiments in our effort to estimate
the average overhead of using the new lock-free memory
management algorithm in comparison to previous lock-free
memory management schemes supporting reference count-
ing. For this purpose we have chosen the lock-free algo-
rithm of a deque (double-ended queue) data structure by
Sundell and Tsigas [20, 16]. As presented, the implemen-
tation of this algorithm uses the lock-free memory manage-
ment with reference counting by Valois et al. [22, 13]. In or-
der to fit better with the new memory management scheme,
the recursion calls in the deque algorithm were unrolled.

In our experiments, each concurrent thread performed
10000 randomly chosen sequential operations on a shared
deque, with an equal distribution among the PushRight,
PushLeft, PopRight and PopLeft operations. Each ex-
periment was repeated 50 times, and an average execution
time for each experiment was estimated. Exactly the same
sequence of operations were performed for all different im-
plementations compared.

The experiments were performed using different num-
ber of threads, varying from 1 to 16 with increasing steps.
In our experiments we compare two implementations of
the lock-free deque; i) using the lock-free memory man-
agement by Valois et al., and ii) using the new lock-free

memory management (including support for dynamic num-
ber of threads) with 6 hazard pointers per thread. These
are the only memory management schemes which (i) sat-
isfy the demands of the lock-free deque algorithm (as well
as other common lock-free algorithms that need to traverse
through nodes which may concurrently be deleted, such as
the Queue algorithm used for the example in fig. 8) and
(ii) work with available atomic primitives. Both implemen-
tations use a shared fixed-size memory pool (i.e. freelist)
for memory allocation and freeing. Two different platforms
were used, with varying number of processors and level of
shared memory distribution. Firstly, we performed our ex-
periments on a 4-processor Xeon PC running Linux. In or-
der to evaluate our algorithm with higher concurrency we
also used a 8-processor SGI Origin 2000 system running
Irix 6.5. A clean-cache operation was performed just be-
fore each sub-experiment. All implementations are written
in C and compiled with the highest optimization level. The
atomic primitives are written in assembly. The results from
the experiments are shown in Figure 9. The average execu-
tion time is drawn as a function of the number of threads.

Our results show that the new lock-free memory man-
agement algorithm outperforms the corresponding algo-
rithm by Valois et al. for any number of threads. The ad-
vantage of using the new algorithm shows to be even more
significant for systems with non-uniform memory architec-
ture.

7 Conclusions

To the best of our knowledge, we have presented the first
lock-free algorithmic implementation of a lock-free garbage
collection scheme based on reference counting that has all
the following features: i) guarantees the safety of local as
well as global references, ii) provides an upper bound of
deleted but not yet reclaimed nodes, iii) is compatible with
arbitrary memory allocation schemes, and iv) uses atomic
primitives which are available in modern architectures.

Experimental results indicate that our new lock-free
garbage collection can significantly improve the perfor-
mance and reliability of implementations of lock-free dy-
namic data structures that require the safety of global ref-
erences. We believe that our implementation is of highly
practical interest for multi-processor applications. We are
currently incorporating it into the NOBLE [19] library.
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